

Центробежный насос с предфильтром для бассейна

JET POOL SPPE

JET POOL SPPE 075, JET POOL SPPE 100, JET POOL SPPE 150

JET POOL SPP

JET POOL SPP 150E, JET POOL SPP 250E

JET POOL HCP

JET POOL HCP 180, JET POOL HCP 250, JET POOL HCP 370, JET POOL HCP 550, JET POOL HCP 1500

Руководство по монтажу и эксплуатации

Содержание

1	Назначение и область применения	3
2	Комплект поставки	
3	Условия эксплуатации и технические характерстики	4
	3.1 Условия эксплуатации	4
	3.2 Технические характеристики	4
	3.3 Габаритные и присоединительные размеры	6
	3.4 Напорно-расходные характеристики	8
4	Устройство и принцип работы	12
	4.1 Устройство насосов	12
	4.2 Принцип работы	15
5	Меры безопасности	16
6	Монтаж и ввод в эксплуатацию	18
	6.1 Общие требования к монтажу	18
	6.2 Гидравлическое подключение	19
	6.3 Электрическое подключение	20
	6.4 Ввод в эксплуатацию	20
7	Техническоеобслуживание	22
8	Транспортировка и хранение	
9	Утилизация	22
10	Возможные неисправности и способы их устранения	
	. Гарантийные обязательства	

Настоящее руководство по монтажу и эксплуатации (далее по тексту – «Руководство») содержит сведения об устройстве, принципе работы, характеристиках центробежных насосов с предфильтром для бассейнов торговой марки UNIPUMP® и указания, которые должны выполняться для правильной и безопасной эксплуатации.

Во избежание несчастных случаев и возникновения неисправностей внимательно ознакомьтесь с данным Руководством перед началом эксплуатации.

Настоящее Руководство объединено с паспортом.

Производитель оставляет за собой право на внесение незначительных изменений в конструкцию насоса и содержание настоящего Руководства без уведомления покупателя.

1 Назначение и область применения

Центробежные насосы с предфильтром (далее по тексту – насосы) серий JET POOL SPP, JET POOL SPPE и JET POOL HCP предназначены для перекачивания и предварительной фильтрации воды в системах водоподготовки плавательных бассейнов и могут применяться для циркуляции воды (совместно с фильтровальной и нагревательной установкой) в контуре систем водообмена бассейна, систем гидромассажа, СПА, водных аттракционов.

Также насосы могут применяться в установках для выращивания рыб и в системах водообеспечения ресторанов морепродуктами.

Примечание – Насосы не предназначены для перекачивания морской воды.

2 Комплект поставки

Наименование	Количество, шт.
Насос в сборе	1
Присоединительные элементы для серий JET POOL SPPE:	
- муфта	2
– накидная гайка	2
– прокладка	2
для серии JET POOL HCP:	
- ниппель	2
Руководство	1
Упаковка	1

3 Условия эксплуатации и технические характеристики

3.1 Условия эксплуатации

Параметр	Значение
Перекачиваемая жидкость:	
- свойства	вода: чистая, хлорированная
- pH	49
- примеси и включения	
• размер твёрдых частиц, мм, не более	0,5
• волокнистые включения	не допускаются
- температура, °С, не более:	
• для серий SPP, SPPE	+1 +60
• для серии НСР	+1 +50
T	
Температура окружающей среды, °С,	+1 +40
Максимальное давление на входе в насос, бар	0,7
Способ установки	стационарный, в
•	горизонтальном положении

3.2 Технические характеристики

Таблица 1 – Технические характеристики JET POOL SPPE/SPP

Папацана	JET	POOL S	PPE	JET POOL SPP		
Параметр	075	100	150	150E	250E	
Электрическая сеть, В, Гц			~ 230, 5	0		
Мощность, <i>кВт</i>	0,37	0,55	0,9	0,75	1,5	
Максимальная производительность, <i>м³/час</i> (л/мин)	13,2 (220)	14,4 (240)	18,3 (305)	19,2 (320)	33,6 (560)	
Максимальный напор, <i>м</i>	13	14	17	17	17	
Максимальная высота всасывания, <i>м</i>	3	3	3	3,5	4,5	
Присоединительные размеры: - входного и выходного патрубков, <i>дюйм</i> - диаметр всасывающего и напорного трубопроводов*, <i>мм</i>	21⁄4" (наруж.) 50					

Папацата	JET	POOL SI	PPE	JET POOL SPP			
Параметр	075	100	150	150E	250E		
Макс. частота вращения, <i>об/мин</i>			2860				
Рабочий (номинальный) ток, <i>А</i>	1,7	2,2	4	4,4	6,6		
Ёмкость конденсатора, <i>мкФ</i>	9	12	14	16	25		
Электрокабель: - длина, м - число жил × сечение кабеля, мм² - штепсельная вилка	1,5 3×1 +						
Режим работы		S1 (продолжительный)					
Класс нагревостойкости изоляции	F						
Встроенная термозащита двигателя, температура срабатывания термовыключателя, °С	мозащита двигателя, рабатывания 145 150						
Уровень шума, <i>дБ</i>	<67	<69	<69	<70	<73		
Степень защиты			IPX5				
Вес нетто, кг	8,6	9	9,5	9,3	13		

^{*} см. подраздел 3.3 «Габаритные и присоединительные размеры»

Таблица 2 – Технические характеристики JET POOL HCP

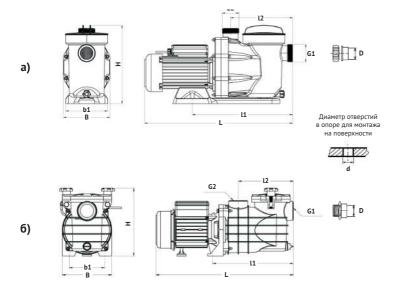
Папачата			JE	T P00	L HCP				
Параметр	180	250	370	550	750	1100	1500		
Электрическая сеть, В, Гц	~ 230, 50								
Мощность, <i>кВт</i>	0,18	0,25	0,37	0,55	0,75	1,1	1,5		
Максимальная производительность, м³/час (л∕мин)	7,8 (130)	10,2 (170)	13,2 (220)	13,8 (230)	15 (250)	17,7 (295)	22,5 (375)		
Максимальный напор, <i>м</i>	7	8	11	12	13	15	17		
Максимальная высота всасывания, <i>м</i>	6	6,5	7	7	7	7	7		
Присоединительные размеры: - входного и выходного патрубков, дюйм - диаметр всасывающего и			2" (внутр.)						
напорного трубопроводов*, <i>мм</i>			63						

Попольно			JET	Γ POOL	. HCP			
Параметр	180	250	370	550	750	1100	1500	
Макс. частота вращения, об/мин				2860)			
Рабочий (номинальный) ток, <i>А</i>	0,8	1,2	2	3	3,3	4,8	6,8	
Ёмкость конденсатора, <i>мкФ</i>	9	9	10	15	18	18	30	
Электрокабель: - длина, м - число жил × сечение кабеля, мм ² - штепсельная вилка	1,5 3×1 +							
Режим работы	S1 (продолжительный)							
Класс нагревостойкости изоляции	F							
Встроенная термозащита двигателя, температура срабатывания термовыключателя, °С			1	.45 1	150			
Уровень шума, <i>дБ</i>	<58	<59	<59	<63	<65	<67	<78	
Степень защиты	IPX5							
Вес нетто, кг	5,4	5,4	5,7	8,2	8,5	9,8	17,6	

3.3 Габаритные и присоединительные размеры

Габаритные, установочные, присоединительные размеры насосов серий JET POOL SPP и JET POOL SPPE показаны на рисунке 1а, для насосов серии JET POOL HCP показаны на рисунке 1б.

Значения габаритных, установочных и присоединительных размеров указаны в Таблице 3.



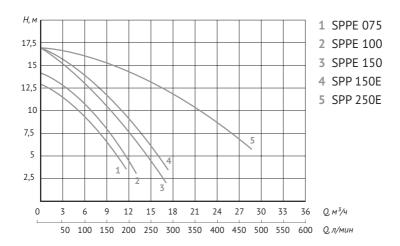
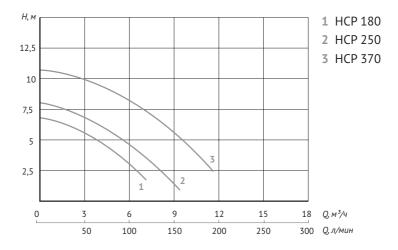
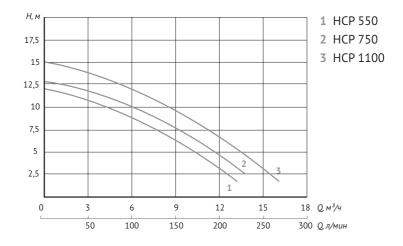
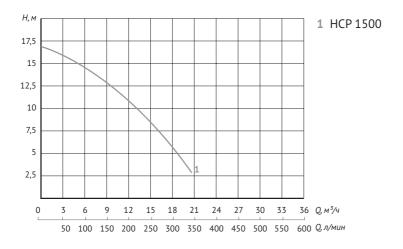

Рисунок 1 - Габаритные, установочные и присоединительные размеры: а) – серии JET POOL SPP/ SPPE; б) – серия HCP

Таблица 3 – Размеры насосов


Серия и			Габа	ритные раз	Присоединительные размеры					
Модель		L	l1	l2	Н	В	b1	d	G1/G2 , дюйм	D *, <i>MM</i>
JET	075	528	384	237,5	305	180	127,2	8,7	21/4"	50
POOL	100	528	384	237,5	305	180	127,2	8,7	21⁄4"	50
SPPE	150	528	384	237,5	305	180	127,2	8,7	21⁄4"	50
JET	150E	528	384	237,5	305	180	127,2	8,7	21/4"	50
POOL SPP	250E	571	384	237,5	305	180	127,2	8,7	21⁄4"	50
	180	436	258	176	217	158	113,5	9,5	1½"	50
	250	436	258	176	217	158	113,5	9,5	1½"	50
JET	370	436	258	176	217	158	113,5	9,5	1½"	50
POOL	550	497	302	204	250	198	136	8,6	1½"	50
HCP	750	497	302	204	250	198	136	8,6	1½"	50
	1100	497	302	204	250	198	136	8,6	1½"	50
	1500	558	312	220	313	216	150	16,1	2"	63

^{*} Внутренний диаметр ниппеля/муфты, соответствующий наружному диаметру присоединяемого трубопровода


3.4 Напорно-расходные характеристики


		Q				ſ	Троизв	одител	тьност	Ь			
Модель	Р, кВт	л/мин	0	50	100	150	200	250	300	350	400	450	500
		м³/час	0	3	6	9	12	15	18	21	24	27	30
SPPE 075	0,37		13	11,2	9	6,5	2,8	-	-	-	-	-	-
SPPE 100	0,55	(H), Μ	14	12,4	10,5	7,7	4,3	0,6	-	-	-	-	-
SPPE 150	0,9		17	15	13	10,2	7,5	4,3	0,6	-	-	-	-
SPP 150E	0,75	Напор	17	15,5	13,6	11,4	9	6,1	2,7	-	-	-	-
SPP 250E	1,5		17	16,4	15,8	15,1	14	13	11,4	10,2	8,4	6,8	4,6

		Q	Произ	Производительность							
Модель	Р, кВт	л/мин	0	50	100	150	200				
		м³/час	0	3	6	9	12				
HCP 180	0,18	9 -	7	5,5	2,8	-	-				
HCP 250	0,25	: :: Напор (Н), м	8	6,7	4,6	1,3	-				
HCP 370	0,37	10	11	9,8	8	5,5	1,8				

	- Р, кВт _	Q	Производительность									
Модель		л/мин	0	50	100	150	200	250	300			
		м³/час	0	3	6	9	12	15	18			
HCP 550	0,55		12	10,5	8,7	6,2	3,1	-	-			
HCP 750	0,75	Hanop (H), M	13	11,5	10	7,5	4,3	0	-			
HCP 1100	1,1	Τ,	15	13,6	11,8	9,3	6,5	3,1	-			

	Р, кВт	Q			Про	ризводиг	пельносі	ть		
Модель		л/мин	0	50	100	150	200	250	300	350
		м³/час	0	3	6	9	12	15	18	21
HCP 1500	1,5	Hanop (H), M	17	15,7	14,2	12,7	10,5	8,4	5,6	2,2

Примечание – Приведённые данные по максимальному напору и максимальной производительности справедливы при напряжении электросети 230 В, нулевой высоте всасывания, чистом фильтре и минимальном сопротивлении потоку воды в напорном трубопроводе.

4 Устройство и принцип работы

4.1 Устройство насосов

Общий вид и конструкция насосов серий JET POOL SPP и JET POOL SPPE показаны на рисунке 2, общий вид и конструкция насосов серии JET POOL HCP показаны на рисунке 3.

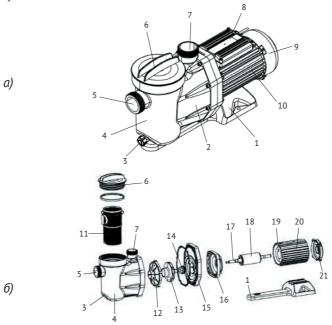


Рисунок 2 - JET POOL SPP и JET POOL SPPE a) – общий вид; б) – конструкция

- 1 монтажная опора
- 2 гидравлическая часть
- 3 сливное отверстие
- 4 фильтр предварительной очистки
- 5 всасывающий патрубок
- 6 крышка фильтра предварительной очистки
- 7 напорный патрубок
- 8 коробка клеммная

- 9 вентилятор с защитным кожухом
- 10 электродвигатель
- 11 сетчатый фильтр
- 12 диффузор
- 13 рабочее колесо
- 14 торцевое уплотнение
- 15 крышка рабочей камеры
- 16 передний подшипниковый щит
- 17 вал
- 18 ротор
- 19 статор
- 20 корпус электродвигателя
- 21 задний подшипниковый щит

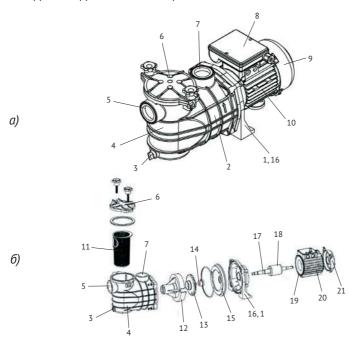


Рисунок 3 - JET POOL HCP а) – общий вид; б) – конструкция

- 1 монтажная опора (объединена с передним подшипниковым щитом)
- 2 гидравлическая часть
- 3 сливное отверстие
- 4 фильтр предварительной очистки
- 5 всасывающий патрубок
- 6 крышка фильтра предварительной очистки
- 7 напорный патрубок
- 8 коробка клеммная
- 9 вентилятор с защитным кожухом
- 10 электродвигатель
- 11 сетчатый фильтр
- 12 диффузор
- 13 рабочее колесо
- 14 торцевое уплотнение
- 15 крышка рабочей камеры
- 16 передний подшипниковый щит
- 17 вал
- 18 ротор
- 19 статор
- 20 корпус электродвигателя
- 21 задний подшипниковый щит

Гидравлическая (насосная) часть – одноступенчатая, центробежного типа, со встроенным диффузором (поз. 12), оснащена сетчатым фильтром (поз. 11) предварительной (грубой) очистки для предотвращения попадания крупных взвешенных частиц, которые могут повредить гидравлические части насоса.

У насосов серий JET POLL SPP и JET POLL SPPE крышка фильтра предварительной очистки (поз. 6) крепится в корпусе с помощью резьбового соединения. Крышка фильтра предварительной очистки насосов серии JET POLL HCP имеет быстросъёмное соединение и крепится на корпусе с помощью откидных болтов.

Герметизация соединения рабочей камеры и вала электродвигателя выполнена с помощью торцевого уплотнения (поз. 14), представляющего собой керамографитовую пару, которая охлаждается и смазывается перекачиваемой жидкостью. Работа

насоса без воды (более 10 с) может привести к перегреву торцевого уплотнения и к термическим деформациям.

Электродвигатель – однофазный, оснащается конденсатором, имеет встроенную термозащиту, охлаждается за счёт вращения вентилятора (поз. 9) на валу (поз. 17) и комплектуется электрокабелем со штепсельной вилкой.

Корпус гидравлической части (поз. 2), сетчатый фильтр, диффузор и крышка рабочей камеры (поз. 15) изготовлены из полипропилена. Материал рабочего колеса (поз. 13) — полифениленоксид, усиленный стекловолокном (PPO-GF20). Крышка фильтра предварительной очистки изготовлена из прозрачного поликарбоната и позволяет осуществлять визуальный контроль присутствия загрязнений в сетчатом фильтре без демонтажа крышки. Присоединительные элементы, предназначенные для соединения насоса с трубопроводом (см. Раздел 2 «Комплект поставки» и подраздел 3.3 «Габаритные и присоединительные размеры»), изготовлены из поливинилхлорида.

Корпус электродвигателя (поз. 20), передний (поз. 16) и задний (поз. 21) подшипниковые щиты изготовлены из алюминиевого сплава. У насосов серии JET POOL HCP передний подшипниковый щит одновременно является монтажной опорой (поз. 1). У насоса модели JET POOL HCP 1500 передний подшипниковый щит изготовлен из чугуна. Обмотка статора электродвигателя (поз. 19) выполнена из медной проволоки.

4.2 Принцип работы

Принцип работы насоса основан на повышении давления жидкости, движущейся от всасывающего патрубка (поз. 5) к напорному патрубку (поз. 7). Электродвигатель (поз. 19) преобразовывает электрическую энергию в механическую, которая передается на ротор (поз. 18), вал (поз. 17) которого соединён с рабочим колесом (поз. 13). Через всасывающий патрубок жидкость поступает в гидравлическую часть (поз. 2), в центр вращающегося рабочего колеса. Под действием центробежных сил жидкость движется вдоль лопаток, на периферии рабочего колеса скорость жидкости увеличивается — растёт кинетическая энергия, которая преобразуется в давление.

На крышке коробки клеммной (поз. 8) расположена идентификационная табличка, на которой указаны основные технические характеристики насоса и его серийный номер, первые четыре цифры которого обозначают год и месяц изготовления (ГГММ...).

5 Меры безопасности

- Насос должен использоваться только по своему прямому назначению в соответствии с техническими характеристиками, условиями эксплуатации и указаниями, приведёнными в соответствующих разделах настоящего Руководства.
- Монтаж, ввод в эксплуатацию, техническое обслуживание, поиск и устранение неисправностей должны производиться квалифицированным персоналом в строгом соответствии с «Правилами устройства электроустановок» (ПУЭ) и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).
- В линии, идущей от распределительного щита к розетке, к которой подключается насос, должен быть установлен дифференциальный автоматический выключатель (УЗО) с током срабатывания не более 30 мА.
- Место подключения насоса к электрической сети (розетке) должно быть защищено от попадания брызг воды и прямых солнечных лучей, находиться вне зоны возможного затопления.
- Насос не предназначена для использования лицами (включая детей) с пониженными физическими, сенсорными или умственными способностями или при отсутствии у них жизненного опыта или знаний, если они не находятся под присмотром или не проинструктированы об использовании насоса лицом, ответственным за их безопасность. Дети должны находится под присмотром для недопущения игр с насосом.
- КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ:
 - подключать насос к электросети, не имеющей работоспособной и эффективной системы заземления;
 - прикасаться к электрическим частям во время работы насоса;
 - перекачивать с помощью насоса вязкие, горючие, легковоспламеняющиеся, взрывоопасные, химически агрессивные жидкости;
 - эксплуатировать насос в местах с повышенной влажностью воздуха, содержанием пыли, химически агрессивных и/или воспламеняющихся газов;
 - устанавливать насос в помещениях, подверженных затоплению или воздействию отрицательных температур;
 - эксплуатировать насос, имеющий трещины в корпусе;
 - эксплуатировать насос с демонтированными крышкой клемнной коробки и кожухом вентилятора;
 - эксплуатировать насос при повышенном напряжении в электрической сети;
 - подключать насос к электрической сети при неисправном электродвигателе;
 - эксплуатировать насос при появлении запаха или дыма, характерного для горящей изоляции;
 - ремонтировать и обслуживать насос, подключенный к электрической сети;
 - накрывать насос во время работы тканью, пленкой т.п.

- Перед проведением любых работ с насосом необходимо убедиться, что электропитание отключено и приняты все меры, исключающие его случайное включение. Подача напряжения на насос разрешается только после завершения работ.
- Запрещается приподнимать или тянуть насос за электрокабель, а также тянуть за электрокабель, вынимая штепсельную вилку из розетки.
- Запрещается вставлять и вынимать штепсельную вилку из розетки мокрыми руками.
- Запрещается отрезать штепсельную вилку, укорачивать электрический кабель или удлинять его наращиванием.
- При повреждении электрического кабеля и/или штепсельной вилки, во избежание поражения электрическим током, их должен заменить Изготовитель, его агент или аналогичное квалифицированное лицо.
- Разборка и ремонт насоса должны осуществляться только специалистами сервисного центра.

6 Монтаж и ввод в эксплуатацию

6.1 Общие требования к монтажу

Все работы по монтажу и вводу в эксплуатацию должны быть проведены квалифицированным персоналом с соблюдением требований раздела 5 «Меры безопасности».

Насос должен устанавливаться в чистом вентилируемом (хорошо проветриваемом) техническом помещении, конструкция которого предотвращает проникновение атмосферных осадков и защищает насос от воздействия прямых солнечных лучей. Допускается устанавливать насос на улице при условии обеспечения необходимого укрытия, защищающего насос от атмосферных осадков и воздействия прямых солнечных лучей (см. подраздел 3.1 «Условия эксплуатации»).

Техническое помещение, в котором производится установка насоса, должно быть сухим и оборудовано следующим образом:

- иметь в полу канализационные трапы или приямок с дренажным насосом для удаления воды из технического помещения в случае аварийных ситуаций;
- пол помещения должен иметь уклон 1% в сторону трапов или приямка;

Место, расположение и способ установки насоса в месте эксплуатации должны обеспечивать свободный и удобный доступ для визуального контроля его технического состояния, выполнения обслуживания, ремонта и демонтажа.

На полу помещения должен быть предусмотрен стационарный постамент или иное основание с горизонтальной, ровной и твёрдой поверхностью, обеспечивающие постоянное и устойчивое положение насоса. Площадь постамента должна превышать габаритные размеры насоса не менее чем на 10%, высота постамента должна быть не менее 100 мм (см. рисунок 4).

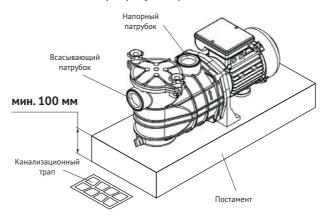


Рисунок 4 - Пример установки насоса на постаменте

Насос должен крепиться на поверхности постамента с помощью соответствующего крепежа, например, анкерных болтов (не входят в комплект поставки). Во избежание ослабления затяжки болтов с течением времени рекомендуется предусмотреть в резьбовых соединениях стопорные шайбы. Для уменьшения шума и вибрации при работе насоса, крепление к поверхности должно быть выполнено через демпферные шайбы или антивибрационные прокладки (не входят в комплект поставки).

В месте установки насоса должен быть обеспечен свободный и удобный доступ к электрической розетке.

Место установки насоса рекомендуется выбирать таким образом, чтобы над насосом не проходили трубопроводы, во избежание попадания воды на кабель электропитания и корпус электродвигателя при протечках в системе.

ВНИМАНИЕ!

Не рекомендуется устанавливать насос на высоте более 2 метров над уровнем воды бассейна (резервуара). Для обеспечения оптимальной и стабильной работы насоса устанавливайте насос ниже уровня воды. При работе с бассейном (резервуаром) устанавливайте насос на расстоянии минимум 3 метра от края.

Установите на всасывающий трубопровод обратный клапан при эксплуатации насоса выше уровня воды.

6.2 Гидравлическое подключение

ВНИМАНИЕ!

Внутренние диаметры всасывающего и напорного трубопроводов должны соответствовать присоединительным размерам всасывающего и напорного патрубков насоса.

- 1. Присоедините всасывающий трубопровод к всасывающему патрубку насоса. Всасывающий трубопровод должен иметь постоянное сечение по всей длине, и длина трубопровода должна быть максимально короткой. Обратные углы во всасывающем трубопроводе не допускаются.
- 2. Присоедините напорный трубопровод к напорному патрубку насоса.
- Для обеспечения возможности проведения технического обслуживания, ремонта и демонтажа насоса рекомендуется на напорном и всасывающем трубопроводе установить шаровые краны (в комплект поставки не входят).
- 4. Всасывающий и напорный трубопроводы должны быть полностью или максимально избавлены от вибрационных и механических нагрузок, передаваемых насосом. Трубопроводы также не должны передавать нагрузку и усилия на насос, для этого предусмотрите соответствующий способ их присоединения к насосу и/или вспомогательные установочные детали (крепления, опоры и т. д.).

ВНИМАНИЕ!

Все соединения во всасывающем и напорном трубопроводах должны быть выполнены герметично.

5. Протяжённый трубопровод, а также загрязнения в сетчатом фильтре увеличивают сопротивление потоку воды и уменьшают максимальную высоту всасывания насоса. Также следует исключить соединения, сужающие или расширяющие проходное сечение трубопроводов.

6.3 Электрическое подключение

ВНИМАНИЕ!

Электрическое подключение следует выполнять только после окончательного выполнения всех гидравлических подключений и заполнения гидравлической части насоса водой, при этом необходимо убедиться в отсутствие течей воды в местах соединений.

Электрическое подключение должно быть выполнено через штепсельное соединение при строгом соблюдении требований Раздела 5 «Меры безопасности» и с учётом электрических параметров насоса (см. 3.2 «Технические характеристики»).

Штепсельная розетка должна быть:

- стационарная;
- иметь контакт заземления;
- использоваться только для питания насоса;
- защищена от проникновения влаги.

Перед включением насоса проверьте напряжение в питающей электрической сети и контролируйте его в процессе дальнейшей эксплуатации насоса. Работа насоса с пониженным напряжением ведёт к снижению его напорно-расходных характеристик и повышению рабочего (номинального) тока. Для обеспечения рабочего напряжения рекомендуется использовать стабилизатор напряжения.

6.4 Ввод в эксплуатацию

ВНИМАНИЕ!

Запрещена работа насоса без воды. Включать насос допускается только после заполнения водой гидравлической части и всасывающего трубопровода.

Перед вводом насоса в эксплуатацию его гидравлическая часть и всасывающий трубопровод должны быть заполнены водой. Для этого снимите крышку фильтра предварительной очистки (см. рисунок 2 и рисунок 3, поз. 6) и заполните гидравлическую часть чистой водой до уровня напорного патрубка. Затем установите крышку фильтра на прежнее место.

Для выпуска воздуха из системы откройте кран на напорном трубопроводе и включите насос. С момента включения и до стабильной работы насоса может пройти до 5-10 минут, в зависимости от протяженности всасывающего и напорного трубопроводов, а также степени их заполненности водой.

ВНИМАНИЕ!

He допускается продолжительная работа насоса без расхода воды (запорная арматура в закрытом положении).

В процессе эксплуатации насоса контролируйте герметичность системы, не допускайте попадания воздуха в насос и трубопроводы.

В случае падения температуры окружающей среды ниже 1°С в месте эксплуатации насоса примите меры, полностью исключающие замерзание воды в насосе и трубопроводах системы, или демонтируйте насос, слейте воду из гидравлической части и поместите насос на хранение (см. Раздел 8 «Транспортировка и хранение»).

ВНИМАНИЕ!

Максимальное число пусков насоса - не более 4 в час (с равномерными интервалами).

7 Техническое обслуживание

При соблюдении условий эксплуатации и указаний настоящего Руководства насос не нуждается в специальном техническом обслуживании.

Рекомендуется регулярно выполнять:

- 1. Технический осмотр насоса на предмет:
 - отсутствия повреждений корпуса, электрического кабеля и штепсельной вилки;
 - надёжности крепления к постаменту;
 - наличия посторонних шумов и вибраций при работе.
- 2. Проверку герметичности всасывающего и напорного трубопроводов, работоспособности шаровых кранов и других конструктивных элементов.
- 3. Очистку сетчатого фильтра от загрязнений. После каждого открытия крышки фильтра проверяйте уплотнительную прокладку на отсутствие повреждений, а также контролируйте чистоту опорных поверхностей, чтобы обеспечить герметичное закрытие крышки фильтра.

Все работы должны выполняться с соблюдением мер безопасности (см. Раздел 5 «Меры безопасности»).

8 Транспортировка и хранение

Транспортировка насоса, упакованного в тару, осуществляется крытым транспортом любого вида, обеспечивающим его сохранность, в соответствии с правилами перевозок грузов, действующими на данном виде транспорта. При транспортировке должна быть исключена возможность перемещения насоса внутри транспортного средства, а также попадания влаги и атмосферных осадков на тару насоса.

Если насос был в эксплуатации, то перед длительным хранением следует очистить его наружную поверхность от отложений и загрязнений, промыть гидравлическую часть чистой водой, слить остатки воды, открыв сливную пробку, и просушить.

Если в системе возможно замерзание воды, демонтируйте насос, очистите и поместите его на хранение. Насос следует хранить в сухом закрытом помещении, при температуре окружающей среды от +1 до +40 °C, вдали от нагревательных приборов, избегая попадания на него прямых солнечных лучей. Воздух в помещении не должен содержать агрессивных паров и газов. Срок хранения 5 лет.

9 Утилизация

Насос не должен быть утилизирован вместе с бытовыми отходами. Возможные способы утилизации необходимо узнать у местных коммунальных служб. Упаковка изделия выполнена из картона и может быть переработана.

10 Возможные неисправности и способы их устранения

Неисправность	Возможные причины	Способы устранения
Насос не включается или само- произвольно выключился во время работы	Отсутствует напряжение в электрической сети	Проверьте напряжение в сети
	Обрыв и/или неисправность контактов в линии электропитания насоса (розетке)	Устраните обрыв и/или неисправность контактов в электрической цепи
	Низкое напряжение в электрической сети	Установите стабилизатор напряжения
	Неисправность конденсатора	Замените конденсатор
		Обратитесь в сервисный центр
	Сработала встроенная термозащита электродвигателя (насос работал с перегрузкой)	Проверьте условия эксплуатации насоса (напряжение в электрической сети, отсутствие засоров в гидравлической части насоса и напорном трубопроводе, отсутствие затруднений при вращении рабочего колеса и вала электродвигателя)
		Проверьте, свободно ли вращается вал электродвигателя. Проверните вал, используя доступ к нему со стороны вентилятора. При затруднённом вращении (наличии загрязнений и отложений) выполните очистку рабочей камеры и рабочего колеса от загрязнений и/или посторонних предметов
	Неисправность электродвигателя	Обратитесь в сервисный центр

Неисправность	Возможные причины	Способы устранения
Насос работает, но не подаёт воду	Нет воды во всасывающем трубопроводе	Обеспечьте поступление воды в насос, проверьте работоспособность обратного клапана
	Слишком большая высота всасывания	Измените место установки насоса, переместив ближе/ ниже к бассейну (см. подраздел 6.1 «Общие требования к монтажу»)
	Попадание воздуха во всасывающий трубопровод и гидравлическую часть насоса	Устраните причину разгерметизации всасывающего трубопровода. Снова заполните насос и всасывающий трубопровод водой (см. подраздел 6.4 «Ввод в эксплуатацию»)
	Фильтр предварительной очистки, всасывающий и/ или напорный трубопровод, частично или полностью засорены	Очистите сетчатый фильтр от загрязнений. Устраните засоры во всасывающем и/или напорном трубопроводах
	Присутствие загрязнений/ отложений и/или посторонних предметов в рабочем колесе	Обратитесь в сервисный центр
	Повреждено рабочее колесо	
Низкая производительность насоса	Низкое напряжение в электрической сети	Установите стабилизатор напряжения
	Внутренний диаметр всасывающего и/или напорного трубопровода меньше требуемого	При монтаже трубопроводов используйте трубы и трубопроводную арматуру, внутренний диаметр которых соответствует присоединительным размерам насоса (см. подразделы 3.2 «Технические характеристики» 3.3 «Габаритные и присоединительные размеры» и 6.1 «Общие требования к монтажу»)

Неисправность	Возможные причины	Способы устранения
Низкая производительность насоса	Слишком большая высота всасывания и протяжённый всасывающий трубопровод и/или напорный трубопроводы	Уменьшите длину трубопровода на всасывании и/или измените место установки насоса, переместив ближе/ниже к бассейну (см. подраздел 6.1 «Общие требования к монтажу»)
	Фильтр предварительной очистки, всасывающий и/или напорный трубопроводы частично засорены	Очистите сетчатый фильтр (корзину) от загрязнений. Устраните засоры во всасывающем и/или напорном трубопроводах
	Присутствие загрязнений/отложений и/или посторонних предметов в рабочем колесе Износ и/или повреждение рабочего колеса	Обратитесь в сервисный центр
Шум и вибрация при работе насоса	Недостаточная надёжность крепления насоса и трубопроводов к опорным поверхностям	Проверьте качество резьбовых соединений, подтяните их при необходимости
	Разрушены или повреждены демпферные шайбы/прокладки в местах крепления насоса к постаменту	Замените демпферные шайбы/прокладки
	Изношены или повреждены подшипники	Замените подшипники
		Обратитесь в сервисный центр
Пробой питающей сети на корпус	Повреждена система заземления	Обеспечьте заземление насоса в соответствии со стандартами и правилами (см. Раздел 5 «Меры безопасности»)

11 Гарантийные обязательства

Изготовитель несёт гарантийные обязательства в течение 12 (двенадцати) месяцев от даты продажи Изделия через розничную сеть. Срок службы Изделия составляет 5 (пять) лет с момента ввода в эксплуатацию.

В течение гарантийного срока Изготовитель бесплатно устраняет дефекты, возникшие по вине Изготовителя, или производит обмен Изделия при условии соблюдения Потребителем правил эксплуатации.

Гарантия не предусматривает возмещения материального ущерба или компенсацию в результате травм, возникших вследствие неправильного монтажа и эксплуатации.

⚠

ВНИМАНИЕ! Гарантийные обязательства не распространяются:

- на неисправности, возникшие в результате несоблюдения Потребителем требований настоящего Руководства;
- на неисправности, возникшие в результате нарушений требований к перекачиваемой жидкости;
- на механические повреждения, вызванные внешним ударным воздействием, небрежным обращением, либо воздействием отрицательных температур окружающей среды;
- на насосы, подвергшиеся самостоятельной разборке, ремонту или модификации:
- на неисправности, возникшие в результате перегрузки насоса. К безусловным признакам перегрузки относятся: разрушение уплотнений и подшипников; деформация и повреждения вращающихся деталей и узлов; следы оплавления, потемнение, обугливание контактов, проводов, обмотки статора, появление цветов побежалости на деталях и узлах; сильное внутреннее загрязнение;
- на детали, подвергшиеся сильному износу, вследствие перекачивания воды с большим содержанием твёрдых, взвешенных частиц и/или попадания в гидравлическую часть посторонних предметов.

Гарантия не действует без предъявления заполненного гарантийного талона.